This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192296 #33 Jan 03 2021 09:52:24 %S A192296 1,3,15,93,621,4425,32703,248901,1934007,15285771,122437215,991731999, %T A192296 8107830597 %N A192296 Number of ternary words of length 2n obtained by self-shuffling. %C A192296 See A191755 for the number of binary words of length 2n obtained by self-shuffling and also for an explanation of "self-shuffling" and a reference. %H A192296 N. Rampersad and J. Shallit, <a href="http://arxiv.org/abs/1106.5767">Shuffling and unshuffling</a>, preprint, arXiv:1106.5767 [cs.FL], 2011. %e A192296 a(2) = 15 because {0,0,0,0}, {0,0,1,1}, {0,0,2,2}, {0,1,0,1}, {0,2,0,2}, {1,0,1,0}, {1,1,0,0}, {1,1,1,1}, {1,1,2,2}, {1,2,1,2}, {2,0,2,0}, {2,1,2,1}, {2,2,0,0}, {2,2,1,1}, {2,2,2,2} (and no other ternary words of length 4) are generated by self-shuffling. %o A192296 (Python) %o A192296 from itertools import product, combinations %o A192296 def a(n): %o A192296 if n<=1: return 3**n %o A192296 range2n, set2n = list(range(2*n)), set(range(2*n)) %o A192296 allset, ssw = set(), [0 for i in range(2*n)] %o A192296 for w in product("012", repeat=n-1): %o A192296 w = "0" + "".join(w) %o A192296 if w.count("1") > w.count("2"): continue %o A192296 for s in combinations(range2n, n): %o A192296 nots = sorted(set2n-set(s)) %o A192296 for i, c in enumerate(w): ssw[s[i]] = ssw[nots[i]] = c %o A192296 allset.add("".join(ssw)) %o A192296 num2g1 = sum(w.count("1") < w.count("2") for w in allset) %o A192296 return 3*(len(allset) + num2g1) %o A192296 print([a(n) for n in range(8)]) # _Michael S. Branicky_, Jan 03 2021 %Y A192296 Cf. A191755. %K A192296 nonn,more %O A192296 0,2 %A A192296 _John W. Layman_, Jun 27 2011 %E A192296 a(8)-a(9) from _Alois P. Heinz_, Sep 26 2011 %E A192296 a(10)-a(12) from _Bert Dobbelaere_, Oct 02 2018