This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192304 #14 Aug 23 2025 08:03:11 %S A192304 1,1,6,13,31,64,129,249,470,869,1583,2848,5073,8961,15718,27405,47535, %T A192304 82080,141169,241945,413366,704261,1196831,2029248,3433441,5798209, %U A192304 9774534,16451149,27646975,46397824 %N A192304 0-sequence of reduction of (2n-1) by x^2 -> x+1. %C A192304 See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". %F A192304 Empirical g.f.: x*(1-2*x+4*x^2-x^3)/(1-3*x+x^2+3*x^3-x^4-x^5). - _Colin Barker_, Feb 08 2012 %t A192304 c[n_] := 2 n - 1; (* odd numbers, A005408 *) %t A192304 Table[c[n], {n, 1, 15}] %t A192304 q[x_] := x + 1; %t A192304 p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] %t A192304 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192304 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192304 t = Table[ %t A192304 Last[Most[ %t A192304 FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, %t A192304 30}] %t A192304 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192304 *) %t A192304 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A178525 *) %t A192304 (* _Peter J. C. Moses_, Jun 20 2011 *) %Y A192304 Cf. A192232, A178525. %K A192304 nonn,more,changed %O A192304 1,3 %A A192304 _Clark Kimberling_, Jun 27 2011