This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192305 #16 Aug 23 2025 08:02:24 %S A192305 2,2,8,16,36,72,142,270,504,924,1672,2992,5306,9338,16328,28392,49132, %T A192305 84664,145350,248710,424312,721972,1225488,2075616,3508466,5919602, %U A192305 9970952,16768960,28161204,47229864,79112062,132362622,221216376,369341388,616061848,1026669712,1709502122,2844208874,4728518600,7855572120 %N A192305 0-sequence of reduction of (2n) by x^2 -> x+1. %C A192305 See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]". %F A192305 a(n) = 2*A190062(n). %F A192305 G.f.: 2*x*(1-2*x+2*x^2)/((1-x)*(1-x-x^2)^2). - _Colin Barker_, Feb 11 2012 %t A192305 c[n_] := 2 n; (* even numbers, A005843 *) %t A192305 Table[c[n], {n, 1, 15}] %t A192305 q[x_] := x + 1; %t A192305 p[0, x_] := 2; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] %t A192305 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192305 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192305 t = Table[ %t A192305 Last[Most[ %t A192305 FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, %t A192305 40}] %t A192305 Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192305 *) %t A192305 Table[Coefficient[Part[t, n]/2, x, 0], {n, 1, 40}] (* A190062 *) %t A192305 Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192306 *) %t A192305 Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A122491 *) %t A192305 (* _Peter J. C. Moses_, Jun 20 2011 *) %Y A192305 Cf. A192232, A192306, A192304. %K A192305 nonn,easy,changed %O A192305 1,1 %A A192305 _Clark Kimberling_, Jun 27 2011