A192307 0-sequence of reduction of (3n) by x^2 -> x+1.
3, 3, 12, 24, 54, 108, 213, 405, 756, 1386, 2508, 4488, 7959, 14007, 24492, 42588, 73698, 126996, 218025, 373065, 636468, 1082958, 1838232, 3113424, 5262699, 8879403, 14956428, 25153440, 42241806, 70844796, 118668093, 198543933, 331824564, 554012082, 924092772
Offset: 1
Programs
-
Mathematica
c[n_] := 3 n; Table[c[n], {n, 1, 15}] q[x_] := x + 1; p[0, x_] := 3; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 40}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192307 *) Table[Coefficient[Part[t, n]/3, x, 0], {n, 1, 40}] (* A190062 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192308 *) Table[Coefficient[Part[t, n]/3, x, 1], {n, 1, 40}] (* A122491 *) (* Peter J. C. Moses, Jun 20 2011 *)
Formula
a(n) = 3*A190062(n).
G.f.: 3*x*(1-2*x+2*x^2)/(1-x)/(1-x-x^2)^2. - Colin Barker, Feb 11 2012
Extensions
More terms from Jason Yuen, Aug 23 2025
Comments