This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192313 #7 Nov 13 2012 12:46:02 %S A192313 1,2,5,13,34,91,247,680,1893,5319,15056,42867,122605,351898,1012729, %T A192313 2920521,8435362,24392655,70599403,204472264 %N A192313 Constant term of the reduction of n-th polynomial at A157751 by x^2->x+1. %C A192313 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. %F A192313 Empirical G.f.: x*(x+1)*(x^2-3*x+1)/(x^4+6*x^3+x^2-4*x+1). [_Colin Barker_, Nov 13 2012] %e A192313 The first five polynomials at A157751 and their reductions are as follows: %e A192313 p0(x)=1 -> 1 %e A192313 p1(x)=2+x -> 2+x %e A192313 p2(x)=4+2x+x^2 -> 5+3x %e A192313 p3(x)=8+4x+4x^2+x^3 -> 13+10x %e A192313 p4(x)=16+8x+12x^2+4x^3+x^4 -> 34+31x. %e A192313 From these, we read %e A192313 A192313=(1,2,5,13,34,...) and A192314=(0,1,3,19,31,...) %t A192313 q[x_] := x + 1; %t A192313 p[0, x_] := 1; %t A192313 p[n_, x_] := (x + 1)*p[n - 1, x] + p[n - 1, -x] /; n > 0 (* A157751 *) %t A192313 Table[Simplify[p[n, x]], {n, 0, 5}] %t A192313 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192313 t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 20}] %t A192313 Table[Coefficient[Part[t, n], x, 0], {n, 1, 20}] %t A192313 (* A192313 *) %t A192313 Table[Coefficient[Part[t, n], x, 1], {n, 1, 20}] %t A192313 (* A192337 *) %Y A192313 Cf. A192232, A192337. %K A192313 nonn %O A192313 1,2 %A A192313 _Clark Kimberling_, Jun 28 2011