This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192324 #9 Apr 25 2016 12:05:02 %S A192324 1,0,2,1,9,11,8,8,5,8,1,25,32,0,8,27,32,26,12,47,7,35,46,3,94,19,75, %T A192324 61,22,3,7,116,67,24,137,63,149,42,60,9,71,155,39,11,72,50,47,40,23, %U A192324 25,70,47,31,15,127,172,73,109,117,58,29,246,201,207,283,52,127,31,138,55,284,23 %N A192324 Sequence of numbers formed as remainder of Mersenne numbers divided by primes. %C A192324 Exponent of Mersenne number formula does not have to be a prime. %F A192324 a(n) = mod (mersenne(n) / prime(n)) %F A192324 where mersenne(n) returns n-th mersenne number and, correspondingly, prime(n) returns n-th prime number. %e A192324 a(1) = mod(mersenne(1)/prime(1)) = mod(1/2) = 1 %e A192324 a(2) = mod(mersenne(2)/prime(2)) = mod(3/3) = 0 %e A192324 a(3) = mod(mersenne(3)/prime(3)) = mod(7/5) = 2 %e A192324 a(4) = mod(mersenne(4)/prime(4)) = mod(15/7) = 1 %e A192324 a(5) = mod(mersenne(5)/prime(5)) = mod(31/11) = 9 %o A192324 (MATLAB) %o A192324 % n = number of computed terms of sequence %o A192324 for i=1:n, %o A192324 a(i) = mod(mersenne(i),prime(i)) ; %o A192324 end %o A192324 (PARI) a(n) = (2^n-1)%prime(n) %o A192324 (PARI) a(n)=lift(Mod(2,prime(n))^n-1) \\ _Charles R Greathouse IV_, Jun 29 2011 %Y A192324 Cf. A000225 (Mersenne), A000040 (prime), A082495. %K A192324 nonn %O A192324 1,3 %A A192324 _Pasi Airikka_, Jun 28 2011