cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192324 Sequence of numbers formed as remainder of Mersenne numbers divided by primes.

This page as a plain text file.
%I A192324 #9 Apr 25 2016 12:05:02
%S A192324 1,0,2,1,9,11,8,8,5,8,1,25,32,0,8,27,32,26,12,47,7,35,46,3,94,19,75,
%T A192324 61,22,3,7,116,67,24,137,63,149,42,60,9,71,155,39,11,72,50,47,40,23,
%U A192324 25,70,47,31,15,127,172,73,109,117,58,29,246,201,207,283,52,127,31,138,55,284,23
%N A192324 Sequence of numbers formed as remainder of Mersenne numbers divided by primes.
%C A192324 Exponent of Mersenne number formula does not have to be a prime.
%F A192324 a(n) = mod (mersenne(n) / prime(n))
%F A192324 where mersenne(n) returns n-th mersenne number and, correspondingly, prime(n) returns n-th prime number.
%e A192324 a(1) = mod(mersenne(1)/prime(1)) = mod(1/2) = 1
%e A192324 a(2) = mod(mersenne(2)/prime(2)) = mod(3/3) = 0
%e A192324 a(3) = mod(mersenne(3)/prime(3)) = mod(7/5) = 2
%e A192324 a(4) = mod(mersenne(4)/prime(4)) = mod(15/7) = 1
%e A192324 a(5) = mod(mersenne(5)/prime(5)) = mod(31/11) = 9
%o A192324 (MATLAB)
%o A192324 % n = number of computed terms of sequence
%o A192324 for i=1:n,
%o A192324     a(i) = mod(mersenne(i),prime(i)) ;
%o A192324 end
%o A192324 (PARI) a(n) = (2^n-1)%prime(n)
%o A192324 (PARI) a(n)=lift(Mod(2,prime(n))^n-1) \\ _Charles R Greathouse IV_, Jun 29 2011
%Y A192324 Cf. A000225 (Mersenne), A000040 (prime), A082495.
%K A192324 nonn
%O A192324 1,3
%A A192324 _Pasi Airikka_, Jun 28 2011