This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192340 #6 Mar 30 2012 18:57:34 %S A192340 1,3,19,1091,4270307,65975813893475,15748607358316275150858234851, %T A192340 897339846665475127909937786392825941994036757434025817827, %U A192340 2913308988276889310145046342161059349226587591969604604068795694857825566722967409631885309325418272374141705507555 %N A192340 Constant term of the reduction of n-th polynomial at A158985 by x^2->x+1. %C A192340 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. %e A192340 The first three polynomials at A158985 and their reductions are as follows: %e A192340 p0(x)=1+x -> 1+x %e A192340 p1(x)=2+2x+x^2 -> 3+3x %e A192340 p2(x)=5+8x+8x^2+4x^3+x^4 -> 19+27x. %e A192340 From these, we read %e A192340 A192340=(1,3,19,...) and A192341=(1,3,27,...) %t A192340 q[x_] := x + 1; %t A192340 p[0, x_] := x + 1; %t A192340 p[n_, x_] := 1 + p[n - 1, x]^2 /; n > 0 (* polynomials defined at A158985 *) %t A192340 Table[Expand[p[n, x]], {n, 0, 4}] %t A192340 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192340 t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 9}] %t A192340 Table[Coefficient[Part[t, n], x, 0], {n, 1, 9}] %t A192340 (* A192340 *) %t A192340 Table[Coefficient[Part[t, n], x, 1], {n, 1, 9}] %t A192340 (* A192341 *) %Y A192340 Cf. A192232, A192341. %K A192340 nonn %O A192340 1,2 %A A192340 _Clark Kimberling_, Jun 28 2011