This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192342 #4 Mar 30 2012 18:57:34 %S A192342 2,7,100,28051,2357659852,16675673548656023155, %T A192342 834234264904007920903714901139450715276, %U A192342 2087840426219791385723375854976408025594408461778898567573217959566013061037427 %N A192342 Constant term of the reduction of n-th polynomial at A158983 by x^2->x+2. %C A192342 For an introduction to reductions of polynomials by substitutions such as x^2->x+2, see A192232. %e A192342 The first three polynomials at A158983 and their reductions are as follows: %e A192342 p0(x)=2+x -> 2+x %e A192342 p1(x)=5+4x+x^2 -> 7+5x %e A192342 p2(x)=26+40x+26x^2+8x^3+x^4 -> 100+95x. %e A192342 From these, we read %e A192342 A192342=(2,7,100,...) and A192343=(1,5,95,...) %t A192342 q[x_] := x + 2; %t A192342 p[0, x_] := x + 2; %t A192342 p[n_, x_] := 1 + p[n - 1, x]^2 /; n > 0 (* polynomials defined at A158983 *) %t A192342 Table[Expand[p[n, x]], {n, 0, 4}] %t A192342 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192342 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192342 t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,9}] %t A192342 Table[Coefficient[Part[t, n], x, 0], {n, 1, 9}] %t A192342 (* A192342 *) %t A192342 Table[Coefficient[Part[t, n], x, 1], {n, 1, 9}] %t A192342 (* A192343 *) %Y A192342 Cf. A192232, A192343. %K A192342 nonn %O A192342 1,1 %A A192342 _Clark Kimberling_, Jun 28 2011