This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192344 #7 Nov 22 2012 07:51:21 %S A192344 1,0,5,4,49,108,637,2024,9329,34104,143621,554092,2255809,8883876, %T A192344 35708701,141734480,566950433,2257038576,9011796293,35916665428, %U A192344 143306508433,571395546204,2279250017533,9089366457656,36253101237521,144581807030568 %N A192344 Constant term of the reduction of n-th polynomial at A161516 by x^2->x+1. %C A192344 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. %F A192344 Conjecture a(n) = 2*a(n-1)+10*a(n-2)-6*a(n-3)-9*a(n-4). G.f.: -(5*x^2+2*x-1) / (9*x^4+6*x^3-10*x^2-2*x+1). [_Colin Barker_, Nov 22 2012] %e A192344 The first four polynomials at A161516 and their reductions are as follows: %e A192344 p0(x)=1 -> 1 %e A192344 p1(x)=x -> x %e A192344 p2(x)=4+x+x^2 -> 5+2x %e A192344 p3(x)=12x+3x^2+x^3 -> 4+17x. %e A192344 From these, we read %e A192344 A192344=(1,0,5,4,...) and A192345=(1,1,2,17...) %t A192344 q[x_] := x + 1; d = Sqrt[x + 4]; %t A192344 p[n_, x_] := ((x + d)^n + (x - d)^n )/ %t A192344 2 (* polynomials defined at A161516 *) %t A192344 Table[Expand[p[n, x]], {n, 0, 4}] %t A192344 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192344 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192344 t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}] %t A192344 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] %t A192344 (* A192344 *) %t A192344 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] %t A192344 (* A192345 *) %Y A192344 Cf. A192232, A192345. %K A192344 nonn %O A192344 1,3 %A A192344 _Clark Kimberling_, Jun 28 2011