This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192353 #10 Sep 12 2012 06:55:05 %S A192353 1,0,5,1,42,43,429,820,4861,12597,58598,177859,732825,2417416,9358677, %T A192353 32256553,120902914,426440955,1571649221,5610955132,20497829133, %U A192353 73645557469,267803779710,965384509651,3502058316337,12646311635088,45818284122149 %N A192353 Constant term of the reduction of the polynomial p(n,x)=(1/2)((x+2)^n+(x-2)^n) by x^2->x+1. %C A192353 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. %F A192353 Empirical G.f.: x*(x^3-4*x^2-2*x+1)/((x^2+3*x+1)*(5*x^2-5*x+1)). [_Colin Barker_, Sep 11 2012] %e A192353 (See A192352 for a related example.) %t A192353 q[x_] := x + 1; d = 2; %t A192353 p[n_, x_] := ((x + d)^n + (x - d)^n )/2 (* similar to polynomials defined at A161516 *) %t A192353 Table[Expand[p[n, x]], {n, 0, 6}] %t A192353 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192353 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192353 t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 30}] %t A192353 Table[Coefficient[Part[t,n],x,0], {n,1,30}](* A192353 *) %t A192353 Table[Coefficient[Part[t,n],x,1], {n,1,30}] (* A192354 *) %Y A192353 Cf. A192232, A192354, A192352. %K A192353 nonn %O A192353 1,3 %A A192353 _Clark Kimberling_, Jun 29 2011