cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192360 Numbers k such that number of primes in the range (k-sqrt(k), k) is equal to number of primes in the range (k, k+sqrt(k)).

This page as a plain text file.
%I A192360 #12 Feb 24 2019 21:09:45
%S A192360 1,4,5,6,9,12,15,17,18,19,22,25,30,35,42,51,53,54,59,60,61,64,67,68,
%T A192360 69,72,76,77,78,81,82,83,88,89,92,104,105,106,120,132,133,134,135,136,
%U A192360 143,144,149,150,151,152,153,154,157,161,163,164,165,166
%N A192360 Numbers k such that number of primes in the range (k-sqrt(k), k) is equal to number of primes in the range (k, k+sqrt(k)).
%p A192360 isA192360 := proc(n) plow := floor(n-sqrt(n)) ; phi := ceil(n+sqrt(n)) ; plow := numtheory[pi](n-1)-numtheory[pi](plow) ; phi := numtheory[pi] (phi-1)-numtheory[pi](n) ; plow = phi ; end proc:
%p A192360 for n from 1 to 200 do if isA192360(n) then printf("%d,",n) ; end if; end do: # _R. J. Mathar_, Jul 02 2011
%o A192360 (PARI) isA192360(n)=my(s=sqrtint(n));2*primepi(n)-isprime(n)==if(n==s^2,primepi(n-s)+primepi(n+s-1),primepi(n-s-1)+primepi(n+s))
%Y A192360 Cf. A188817, A192221.
%K A192360 nonn
%O A192360 1,2
%A A192360 _Juri-Stepan Gerasimov_, Jun 28 2011
%E A192360 3 removed by _Charles R Greathouse IV_, Jun 29 2011