cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192364 Number of lattice paths from (0,0) to (n,n) using steps (0,1),(0,2),(1,0),(2,0),(1,1).

This page as a plain text file.
%I A192364 #21 Sep 27 2020 15:07:51
%S A192364 1,3,21,157,1239,10047,82951,693603,5854581,49778997,425712429,
%T A192364 3657968097,31555053921,273109567797,2370474720369,20625186298269,
%U A192364 179841473895447,1571088267426447,13747953837604959,120482775658910763,1057293764707074027,9289536349244758791,81709329486947791419
%N A192364 Number of lattice paths from (0,0) to (n,n) using steps (0,1),(0,2),(1,0),(2,0),(1,1).
%H A192364 Seiichi Manyama, <a href="/A192364/b192364.txt">Table of n, a(n) for n = 0..1000</a>
%F A192364 From _Vaclav Kotesovec_, Oct 24 2012: (Start)
%F A192364 G.f.: (3 - 6*x + sqrt(-1 + 4*x*(9*x-11) + 4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))) / (sqrt(10+8*x)*sqrt((1-x)*(1-9*x))*(4*x*(9*x-11)-1+4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))^(1/4))
%F A192364 D-finite with recurrence: 15*(n-1)*n*a(n) = (n-1)*(133*n-54)*a(n-1) + (31*n^2 - 177*n + 224)*a(n-2) - (113*n^2 - 295*n + 144)*a(n-3) - 18*(n-3)*(2*n-5)*a(n-4)
%F A192364 a(n) ~ 3^(2*n+3/2)/(2*sqrt(14*Pi*n))
%F A192364 (End)
%F A192364 a(n) = A091533(2*n,n) for n >= 0. - _Paul D. Hanna_, Dec 11 2018
%F A192364 a(n) = [x^n*y^n] 1/(1 - x - y - x^2 - x*y - y^2) for n >= 0. - _Paul D. Hanna_, Dec 11 2018
%t A192364 FullSimplify[CoefficientList[Series[(3-6*x+Sqrt[-1+4*x*(9*x-11)+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1]])/(Sqrt[10+8*x]*Sqrt[(1-x)*(1-9*x)]*(4*x*(9*x-11)-1+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1])^(1/4)), {x, 0, 10}], x]]
%o A192364 (PARI) /* same as in A092566 but use */
%o A192364 steps=[[0,1], [0,2], [1,0], [2,0], [1,1]];
%o A192364 /* _Joerg Arndt_, Jun 30 2011 */
%Y A192364 Cf. A091533.
%K A192364 nonn,walk
%O A192364 0,2
%A A192364 _Eric Werley_, Jun 29 2011
%E A192364 Terms > 425712429 by _Joerg Arndt_, Jun 30 2011