This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192364 #21 Sep 27 2020 15:07:51 %S A192364 1,3,21,157,1239,10047,82951,693603,5854581,49778997,425712429, %T A192364 3657968097,31555053921,273109567797,2370474720369,20625186298269, %U A192364 179841473895447,1571088267426447,13747953837604959,120482775658910763,1057293764707074027,9289536349244758791,81709329486947791419 %N A192364 Number of lattice paths from (0,0) to (n,n) using steps (0,1),(0,2),(1,0),(2,0),(1,1). %H A192364 Seiichi Manyama, <a href="/A192364/b192364.txt">Table of n, a(n) for n = 0..1000</a> %F A192364 From _Vaclav Kotesovec_, Oct 24 2012: (Start) %F A192364 G.f.: (3 - 6*x + sqrt(-1 + 4*x*(9*x-11) + 4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))) / (sqrt(10+8*x)*sqrt((1-x)*(1-9*x))*(4*x*(9*x-11)-1+4*sqrt(1-x)*sqrt(5+4*x)*sqrt(9*x-1))^(1/4)) %F A192364 D-finite with recurrence: 15*(n-1)*n*a(n) = (n-1)*(133*n-54)*a(n-1) + (31*n^2 - 177*n + 224)*a(n-2) - (113*n^2 - 295*n + 144)*a(n-3) - 18*(n-3)*(2*n-5)*a(n-4) %F A192364 a(n) ~ 3^(2*n+3/2)/(2*sqrt(14*Pi*n)) %F A192364 (End) %F A192364 a(n) = A091533(2*n,n) for n >= 0. - _Paul D. Hanna_, Dec 11 2018 %F A192364 a(n) = [x^n*y^n] 1/(1 - x - y - x^2 - x*y - y^2) for n >= 0. - _Paul D. Hanna_, Dec 11 2018 %t A192364 FullSimplify[CoefficientList[Series[(3-6*x+Sqrt[-1+4*x*(9*x-11)+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1]])/(Sqrt[10+8*x]*Sqrt[(1-x)*(1-9*x)]*(4*x*(9*x-11)-1+4*Sqrt[1-x]*Sqrt[5+4*x]*Sqrt[9*x-1])^(1/4)), {x, 0, 10}], x]] %o A192364 (PARI) /* same as in A092566 but use */ %o A192364 steps=[[0,1], [0,2], [1,0], [2,0], [1,1]]; %o A192364 /* _Joerg Arndt_, Jun 30 2011 */ %Y A192364 Cf. A091533. %K A192364 nonn,walk %O A192364 0,2 %A A192364 _Eric Werley_, Jun 29 2011 %E A192364 Terms > 425712429 by _Joerg Arndt_, Jun 30 2011