cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192365 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).

This page as a plain text file.
%I A192365 #27 Apr 24 2025 02:13:25
%S A192365 1,3,22,165,1327,10950,92045,783579,6733966,58294401,507579829,
%T A192365 4440544722,39000863629,343677908223,3037104558574,26904952725061,
%U A192365 238854984979423,2124492829796598,18927927904130617,168888613467092895,1508973226894216106,13498652154574126523,120886709687492946083
%N A192365 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(0,1),(0,2),(1,1),(2,2).
%C A192365 Diagonal of the rational function 1 / (1 - x - y - x^2 - y^2 - x*y - (x*y)^2). - _Ilya Gutkovskiy_, Apr 23 2025
%H A192365 Alois P. Heinz, <a href="/A192365/b192365.txt">Table of n, a(n) for n = 0..1000</a>
%F A192365 G.f.: sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) ) where p4 = x^4+6*x^3+7*x^2-10*x+1. - _Mark van Hoeij_, Apr 16 2013
%p A192365 p4 := x^4+6*x^3+7*x^2-10*x+1;
%p A192365 ogf := sqrt( ((2*x^2+6*x-3)/p4 - 2/sqrt(p4))/(4*x^2-4*x-5) );
%p A192365 series(ogf, x=0, 30);  # _Mark van Hoeij_, Apr 16 2013
%p A192365 # second Maple program:
%p A192365 b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
%p A192365       `if`(max(x, y)=0, 1, add(b(x, y-j)+
%p A192365          b(x-j, y)+b(x-j, y-j), j=1..2)))
%p A192365     end:
%p A192365 a:= n-> b(n$2):
%p A192365 seq(a(n), n=0..30);  # _Alois P. Heinz_, May 16 2017
%t A192365 b[x_, y_] := b[x, y] = If[Min[x, y] < 0, 0, If[Max[x, y] == 0, 1, Sum[b[x, y - j] + b[x - j, y] + b[x - j, y - j], {j, 1, 2}]]];
%t A192365 a[n_] := b[n, n];
%t A192365 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jun 23 2017, after _Alois P. Heinz_ *)
%o A192365 (PARI) /* same as in A092566 but use */
%o A192365 steps=[[0,1], [0,2], [1,0], [2,0], [1,1], [2,2]];
%o A192365 /* _Joerg Arndt_, Jun 30 2011 */
%K A192365 nonn
%O A192365 0,2
%A A192365 _Eric Werley_, Jun 29 2011
%E A192365 Terms > 507579829 from _Joerg Arndt_, Jun 30 2011