cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192371 Number of lattice paths from (0,0) to (n,n) using steps (1,1), (0,2), (2,0), (0,3), (3,0).

This page as a plain text file.
%I A192371 #20 May 27 2015 10:34:00
%S A192371 1,1,3,9,25,87,307,1113,4149,15605,59201,225999,866449,3333847,
%T A192371 12865335,49769689,192945411,749396493,2915432049,11358771965,
%U A192371 44313108627,173081422997,676766482917,2648843996031,10376891445525,40685535827325,159641884780749,626849029013919,2463010645910537,9683604464279235
%N A192371 Number of lattice paths from (0,0) to (n,n) using steps (1,1), (0,2), (2,0), (0,3), (3,0).
%H A192371 Alois P. Heinz, <a href="/A192371/b192371.txt">Table of n, a(n) for n = 0..1000</a>
%F A192371 G.f.: sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)) where the function s satisfies (s^3-s-1)*(s-1)+x*s*(4-3*s) = 0. - _Mark van Hoeij_, Apr 17 2013
%p A192371 s := RootOf( (s^3-s-1)*(s-1)+x*s*(4-3*s), s);
%p A192371 ogf := sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)):
%p A192371 series(ogf, x=0, 30);  # _Mark van Hoeij_, Apr 17 2013
%p A192371 # second Maple program:
%p A192371 b:= proc(p) b(p):= `if`(p=[0$2], 1, `if`(min(p[])<0, 0,
%p A192371       add(b(p-l), l=[[1, 1], [0, 2], [2, 0], [0, 3], [3, 0]])))
%p A192371     end:
%p A192371 a:= n-> b([n$2]):
%p A192371 seq(a(n), n=0..30);  # _Alois P. Heinz_, Aug 18 2014
%t A192371 b[p_List] := b[p] = If[p == {0, 0}, 1, If[Min[p] < 0, 0, Sum[b[p - l], {l, {{1, 1}, {0, 2}, {2, 0}, {3, 0}, {0, 3}}}]]]; a[n_] := b[{n, n}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, May 27 2015, after _Alois P. Heinz_ *)
%o A192371 (PARI) /* same as in A092566 but use */
%o A192371 steps=[[1,1], [2,0], [0,2], [3,0], [0,3]];
%o A192371 /* _Joerg Arndt_, Jun 30 2011 */
%Y A192371 Cf. A001850, A026641, A036355, A137644, A192364, A192365, A192369, A192368.
%K A192371 nonn
%O A192371 0,3
%A A192371 _Joerg Arndt_, Jul 01 2011