cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192373 Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.

This page as a plain text file.
%I A192373 #21 May 12 2014 08:59:11
%S A192373 1,0,7,8,77,192,1043,3472,15529,57792,240655,934808,3789653,14963328,
%T A192373 60048443,238578976,953755537,3798340224,15162325975,60438310184,
%U A192373 241126038941,961476161856,3835121918243,15294304429744,61000836720313,243280700771904
%N A192373 Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.
%C A192373 The polynomials are given by p(n,x)=((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+4).
%C A192373 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
%F A192373 Conjecture: a(n) = 2*a(n-1)+10*a(n-2)-6*a(n-3)-9*a(n-4). G.f.: -x*(x+1)*(3*x-1) / (9*x^4+6*x^3-10*x^2-2*x+1). - _Colin Barker_, May 09 2014
%e A192373 The first five polynomials p(n,x) and their reductions are as follows:
%e A192373 p(0,x)=1 -> 1
%e A192373 p(1,x)=2x -> 2x
%e A192373 p(2,x)=4+x+3x^2 -> 7+4x
%e A192373 p(3,x)=16x+4x^2+4x^3 -> 8+28x
%e A192373 p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 77+84x.
%e A192373 From these, read A192352=(1,0,7,8,77,...) and A049602=(0,2,4,28,84,...).
%t A192373 q[x_] := x + 1; d = Sqrt[x + 4];
%t A192373 p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* A162517 *)
%t A192373 Table[Expand[p[n, x]], {n, 1, 6}]
%t A192373 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
%t A192373 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]  (* A192373 *)
%t A192373 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]  (* A192374 *)
%t A192373 Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192375 *)
%Y A192373 Cf. A192232, A192374, A192375, A162517.
%K A192373 nonn
%O A192373 1,3
%A A192373 _Clark Kimberling_, Jun 29 2011