A192379 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
1, 0, 5, 8, 45, 128, 505, 1680, 6089, 21120, 74909, 262680, 926485, 3258112, 11474865, 40382752, 142171985, 500432640, 1761656821, 6201182760, 21829269181, 76841888640, 270495370025, 952182350768, 3351823875225, 11798909226368
Offset: 1
Keywords
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x)=1 -> 1 p(1,x)=2x -> 2x p(2,x)=2+x+3x^2 -> 5+4x p(3,x)=8x+4x^2+4x^3 -> 8+20x p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x. From these, read A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...).
Programs
-
Mathematica
q[x_] := x + 1; d = Sqrt[x + 2]; p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* Cf. A162517 *) Table[Expand[p[n, x]], {n, 1, 6}] reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}] Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192379 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192380 *) Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192381 *)
Formula
Conjecture: a(n) = 2*a(n-1)+6*a(n-2)-2*a(n-3)-a(n-4). G.f.: -x*(x^2+2*x-1) / (x^4+2*x^3-6*x^2-2*x+1). - Colin Barker, May 11 2014
Comments