This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192392 #13 Mar 31 2012 13:48:31 %S A192392 1,32,654,97108,1413121115,212019181716,28272625222324, %T A192392 3635343331293032,454443424140393837,55545352514948474650, %U A192392 6665646362616059585756,787776757473727170696768,91908988878685848382817980,9998979695949392105104103101100102 %N A192392 Largest multiple of n which can be formed as concatenation of the next n numbers, {1+n(n-1)/2,...,n(n+1)/2} (written in decimal), or 0 if no such number exists. %C A192392 Equal to A076069(n) whenever A076069(n) is a multiple of n. Less than or equal to A076072(n), where permutations of individual digits are allowed. %o A192392 (PARI) precperm(p)={ my(t); forstep( i=#p-1,1,-1, p[i]>p[i+1] && for( j=1,#t=vecsort( vecextract( p, 2^#p-2^(i-1) ),,4), t[j]<p[i] && return( concat([ vecextract( p,2^(i-1)-1 ), [t[j]], vecextract( t, Str( "^"j ))])))); vecsort(p,,4)} %o A192392 A192392(n)={ my( d=vecsort( vector( n,i,Str( i+n*(n-1)/2 )),,4 ), t ); %o A192392 for( i=1,n!, eval(concat(d))%n || break; d=precperm(d)); eval(concat(d))} %Y A192392 Cf. A076068, A076069, A076072, A080479, A080480. %K A192392 nonn,base %O A192392 1,2 %A A192392 _M. F. Hasler_, Jun 29 2011