This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192396 #24 Jul 11 2023 09:17:28 %S A192396 0,0,0,0,1,0,0,2,1,0,0,4,4,2,0,0,8,13,8,2,0,0,16,40,32,12,3,0,0,32, %T A192396 121,128,62,18,3,0,0,64,364,512,312,108,24,4,0,0,128,1093,2048,1562, %U A192396 648,171,32,4,0,0,256,3280,8192,7812,3888,1200,256,40,5,0 %N A192396 Square array T(n, k) = floor(((k+1)^n - (1+(-1)^k)/2)/2) read by antidiagonals. %C A192396 T(n,k) is the number of compositions of odd natural numbers into n parts <=k. %H A192396 G. C. Greubel, <a href="/A192396/b192396.txt">Antidiagonals n = 0..50, flattened</a> %H A192396 Adi Dani, <a href="https://oeis.org/wiki/User:Adi_Dani_/Restricted_compositions_of_natural_numbers">Restricted compositions of natural numbers</a> %e A192396 T(2,4)=12: there are 12 compositions of odd natural numbers into 2 parts <=4 %e A192396 1: (0,1), (1,0); %e A192396 3: (1,2), (2,1), (0,3), (3,0); %e A192396 5: (1,4), (4,1), (2,3), (3,2); %e A192396 7: (3,4), (4,3). %e A192396 The table starts %e A192396 0, 0, 0, 0, 0, 0, ... A000004; %e A192396 0, 1, 1, 2, 2, 3, ... A004526; %e A192396 0, 2, 4, 8, 12, 18, ... A007590; %e A192396 0, 4, 13, 32, 62, 108, ... A036487; %e A192396 0, 8, 40, 128, 312, 648, ... A191903; %e A192396 0, 16, 121, 512, 1562, 3888, ... A191902; %e A192396 . . . . ... %e A192396 with columns: A000004, A000079, A003462, A004171, A128531, A081341, ... . %e A192396 Antidiagonal triangle begins: %e A192396 0; %e A192396 0, 0; %e A192396 0, 1, 0; %e A192396 0, 2, 1, 0; %e A192396 0, 4, 4, 2, 0; %e A192396 0, 8, 13, 8, 2, 0; %e A192396 0, 16, 40, 32, 12, 3, 0; %e A192396 0, 32, 121, 128, 62, 18, 3, 0; %e A192396 0, 64, 364, 512, 312, 108, 24, 4, 0; %p A192396 A192396 := proc(n,k) (k+1)^n-(1+(-1)^k)/2 ; floor(%/2) ; end proc: %p A192396 seq(seq( A192396(d-k,k),k=0..d),d=0..10) ; # _R. J. Mathar_, Jun 30 2011 %t A192396 T[n_, k_]:= Floor[((k+1)^n - (1+(-1)^k)/2)/2]; %t A192396 Table[T[n-k,k], {n,0,12}, {k,0,n}]//Flatten %o A192396 (Magma) %o A192396 A192396:= func< n,k | Floor(((k+1)^n - (1+(-1)^k)/2)/2) >; %o A192396 [A192396(n-k,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 11 2023 %o A192396 (SageMath) %o A192396 def A192396(n,k): return ((k+1)^n - ((k+1)%2))//2 %o A192396 flatten([[A192396(n-k,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jul 11 2023 %Y A192396 Rows: A000004, A004526, A007590, A036487, A191902, A191902. %Y A192396 Columns: A000004, A000079, A003462, A004171, A081341, A128531. %K A192396 nonn,tabl,easy %O A192396 0,8 %A A192396 _Adi Dani_, Jun 29 2011