cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192417 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (2,2), (3,3).

This page as a plain text file.
%I A192417 #22 Sep 08 2022 08:45:57
%S A192417 1,2,7,27,107,436,1810,7609,32288,138009,593311,2562725,11112720,
%T A192417 48347332,210936119,922550622,4043488129,17755735241,78099099877,
%U A192417 344033901804,1517535718392,6701979806379,29630948706756,131136723532257,580901892464599,2575423975663301
%N A192417 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (2,2), (3,3).
%H A192417 G. C. Greubel, <a href="/A192417/b192417.txt">Table of n, a(n) for n = 0..1000</a>
%F A192417 G.f.: 1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1). - _Mark van Hoeij_, Apr 17 2013
%F A192417 D-finite with recurrence: n*a(n) +2*(-2*n+1)*a(n-1) +2*(-n+1)*a(n-2) +(-2*n+3)*a(n-3) +(n-2)*a(n-4) +(2*n-5)*a(n-5) +(n-3)*a(n-6)=0. - _R. J. Mathar_, Oct 08 2016
%t A192417 CoefficientList[Series[1/Sqrt[x^6+2x^5+x^4-2x^3-2x^2-4x+1], {x, 0, 25}], x] (* _Michael De Vlieger_, Oct 08 2016 *)
%o A192417 (PARI) /* same as in A092566 but use */
%o A192417 steps=[[0,1], [1,0], [2,2], [3,3]];
%o A192417 /* _Joerg Arndt_, Jun 30 2011 */
%o A192417 (PARI) my(x='x+O('x^30)); Vec(1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)) \\ _G. C. Greubel_, Apr 29 2019
%o A192417 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1) )); // _G. C. Greubel_, Apr 29 2019
%o A192417 (Sage) (1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 29 2019
%Y A192417 Cf. A001850, A026641, A036355, A137644, A192364, A192365, A192369, A191354.
%K A192417 nonn
%O A192417 0,2
%A A192417 _Joerg Arndt_, Jun 30 2011