cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192420 Smallest k such that 1^4, 2^4, 3^4,... ,n^4 are distinct modulo k.

Original entry on oeis.org

1, 2, 6, 9, 11, 14, 14, 18, 19, 22, 22, 31, 31, 31, 31, 38, 38, 38, 38, 43, 43, 46, 46, 59, 59, 59, 59, 59, 59, 62, 62, 67, 67, 71, 71, 79, 79, 79, 79, 83, 83, 86, 86, 94, 94, 94, 94, 103, 103, 103, 103, 107, 107, 118, 118, 118, 118, 118, 118, 127, 127, 127, 127, 131, 131, 134, 134, 139, 139
Offset: 1

Views

Author

R. J. Mathar, Jun 30 2011

Keywords

Comments

The discriminator D(4,n).

Crossrefs

Programs

  • Maple
    dis := proc(j,n) local k,s,i; for k from 1 do s := {} ; for i from 1 to n do s := s union { (i^j) mod k} ; end do: if nops(s) = n then return k; end if; end do: end proc:
    A192420 := proc(n) dis(4,n) ; end proc:
  • Mathematica
    a[n_] := For[k = 1, True, k++, If[Unequal @@ PowerMod[Range[n], 4, k], Return[k]]]; Array[a, 100] (* Jean-François Alcover, May 18 2018 *)
  • PARI
    A192420(nMax,f=n->n^4)={my(S=[],a=1); vector(nMax,n,S=concat(S,f(n));while(#Set(S%a)M. F. Hasler, May 04 2016