A192420 Smallest k such that 1^4, 2^4, 3^4,... ,n^4 are distinct modulo k.
1, 2, 6, 9, 11, 14, 14, 18, 19, 22, 22, 31, 31, 31, 31, 38, 38, 38, 38, 43, 43, 46, 46, 59, 59, 59, 59, 59, 59, 62, 62, 67, 67, 71, 71, 79, 79, 79, 79, 83, 83, 86, 86, 94, 94, 94, 94, 103, 103, 103, 103, 107, 107, 118, 118, 118, 118, 118, 118, 127, 127, 127, 127, 131, 131, 134, 134, 139, 139
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- P. Moree, H. Roskam, On an arithmetical function related to Euler's totient and the discriminator, Fib. Quart. 33 (4) (1995), 332-340
Programs
-
Maple
dis := proc(j,n) local k,s,i; for k from 1 do s := {} ; for i from 1 to n do s := s union { (i^j) mod k} ; end do: if nops(s) = n then return k; end if; end do: end proc: A192420 := proc(n) dis(4,n) ; end proc:
-
Mathematica
a[n_] := For[k = 1, True, k++, If[Unequal @@ PowerMod[Range[n], 4, k], Return[k]]]; Array[a, 100] (* Jean-François Alcover, May 18 2018 *)
-
PARI
A192420(nMax,f=n->n^4)={my(S=[],a=1); vector(nMax,n,S=concat(S,f(n));while(#Set(S%a)
M. F. Hasler, May 04 2016
Comments