A192431 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 4, 15, 52, 185, 648, 2287, 8040, 28321, 99660, 350879, 1235036, 4347705, 15304208, 53873695, 189642192, 667570433, 2349942420, 8272149359, 29119170180, 102503781241, 360828342424, 1270168882575, 4471181087032, 15739215003425
Offset: 0
Keywords
Examples
The first five polynomials p(n,x) and their reductions are as follows: p(0,x)=1 -> 1 p(1,x)=1+x -> 1+x p(2,x)=2+3x+x^2 -> 3+4x p(3,x)=2+7x+6x^2+x^3 -> 9+15x p(4,x)=4+12x+17x^2+10x^3+x^4 -> 33+52x. From these, read A192430=(1,1,3,9,33,...) and A192431=(0,1,4,15,52,...)
Programs
-
Mathematica
(See A192430.)
Formula
Conjectures from Colin Barker, Jun 07 2019: (Start)
G.f.: x*(1 + x)^2 / (1 - 2*x - 6*x^2 + 2*x^3 + x^4).
a(n) = 2*a(n-1) + 6*a(n-2) - 2*a(n-3) - a(n-4) for n>3.
(End)
Comments