This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192433 #20 Jun 16 2025 08:06:48 %S A192433 1,1,2,3,4,5,7,9,12,16,19,24,31,37,46,57,68,83,101,120,143,171,202, %T A192433 239,283,331,388,455,529,616,716,827,957,1105,1270,1460,1676,1918, %U A192433 2193,2506,2854,3248,3695,4191,4752,5382,6082,6870,7752,8732,9829 %N A192433 Coefficients of a mock theta function. %H A192433 Vaclav Kotesovec, <a href="/A192433/b192433.txt">Table of n, a(n) for n = 0..10000</a> %H A192433 K. Bringmann, K. Hikami and J. Lovejoy, <a href="https://lovejoy.perso.math.cnrs.fr/WRTmock5.pdf">On the modularity of the unified WRT invariants of certain Seifert manifolds</a> %H A192433 K. Bringmann, K. Hikami, and J. Lovejoy, <a href="https://doi.org/10.1016/j.aam.2009.12.004">On the modularity of the unified WRT invariants of certain Seifert manifolds</a>, Adv. Appl. Math. 46 (2011), 86-93. %F A192433 a(n) = A053251(2*n+1). %F A192433 a(n) ~ exp(Pi*sqrt(n/3)) / (4*sqrt(2*n)). - _Vaclav Kotesovec_, Jun 12 2019 %t A192433 nmax = 60; CoefficientList[Series[Sum[x^k*Product[1 + x^j, {j, 1, 2*k}], {k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 16 2025 *) %o A192433 (PARI) N=66; q='q+O('q^N); gf=sum(n=0,N,q^n*prod(k=1,2*n,1+q^k)); Vec(gf) \\ _Joerg Arndt_, Jul 01 2011 %Y A192433 Cf. A053251. %K A192433 nonn %O A192433 0,3 %A A192433 _Jeremy Lovejoy_, Jun 30 2011