cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192446 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (3,0), (0,1), (0,3).

This page as a plain text file.
%I A192446 #36 Oct 06 2019 05:36:44
%S A192446 1,2,6,30,154,768,3906,20232,105750,556328,2943432,15646932,83500126,
%T A192446 447057380,2400249624,12918250836,69674241654,376489511460,
%U A192446 2037768450480,11045915485740,59955446568276,325821729044784,1772588671356204,9653187691115640,52617711157401186,287051310425050668
%N A192446 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (3,0), (0,1), (0,3).
%C A192446 Diagonal of rational function 1/(1 - (x + y + x^3 + y^3)). - _Gheorghe Coserea_, Aug 06 2018
%H A192446 Alois P. Heinz, <a href="/A192446/b192446.txt">Table of n, a(n) for n = 0..1344</a> (first 304 terms from Gheorghe Coserea)
%F A192446 G.f.: sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3)  where s is a function satisfying 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1)=0. - _Mark van Hoeij_, Apr 17 2013
%F A192446 From _Gheorghe Coserea_, Aug 06 2018: (Start)
%F A192446 G.f. y=A(x) satisfies:
%F A192446 0 = (4*x^3 + 8*x^2 + 4*x - 1)^4*(108*x^3 - 108*x^2 + 36*x - 31)^2*y^8 + 4*(4*x^3 + 8*x^2 + 4*x - 1)^3*(36*x^3 + 36*x^2 - 4*x - 13)*(108*x^3 - 108*x^2 + 36*x - 31)*y^6 + 2*(4*x^3 + 8*x^2 + 4*x - 1)^2*(2160*x^6 + 4320*x^5 + 1872*x^4 - 1784*x^3 - 1576*x^2 + 472*x + 431)*y^4 + 4*(4*x^3 + 8*x^2 + 4*x - 1)*(112*x^6 + 448*x^5 + 688*x^4 + 456*x^3 + 96*x^2 + 40*x + 55)*y^2 + (4*x^3 + 12*x^2 + 12*x + 3)^2.
%F A192446 0 = (4*x^3 + 8*x^2 + 4*x - 1)*(108*x^3 - 108*x^2 + 36*x - 31)*(270*x^4 + 180*x^3 + 144*x^2 - 225*x - 59)*y''' + (1283040*x^9 + 1924560*x^8 + 1080864*x^7 - 1425816*x^6 - 2135376*x^5 + 33048*x^4 + 702468*x^3 + 134520*x^2 + 43892*x + 30575)*y'' + 30*(111780*x^8 + 149040*x^7 + 120960*x^6 - 122094*x^5 - 172206*x^4 - 6012*x^3 + 36615*x^2 + 10298*x - 1541)*y' + 60*(29160*x^7 + 34020*x^6 + 36288*x^5 - 43092*x^4 - 45882*x^3 - 6462*x^2 + 1890*x + 913)*y.
%F A192446 (End)
%p A192446 REL := 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1);
%p A192446 ogf := sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3);
%p A192446 series(eval(ogf, s=RootOf(REL,s)),x=0,30);  # _Mark van Hoeij_, Apr 17 2013
%p A192446 # second Maple program:
%p A192446 b:= proc(x, y) option remember; `if`(y=0, 1, add((p->
%p A192446       `if`(p[1]<0, 0, b(p[1], p[2])))(sort([x, y]-h)),
%p A192446         h=[[1, 0], [0, 1], [3, 0], [0, 3]]))
%p A192446     end:
%p A192446 a:= n-> b(n$2):
%p A192446 seq(a(n), n=0..30);  # _Alois P. Heinz_, Dec 28 2018
%t A192446 a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-3] + a[n-1, k] + a[n-3, k]; a[_, _] = 0;
%t A192446 a[n_] := a[n, n];
%t A192446 a /@ Range[0, 30] (* _Jean-François Alcover_, Oct 06 2019 *)
%o A192446 (PARI) /* same as in A092566 but use */
%o A192446 steps=[[1,0], [3,0], [0,1], [0,3]];
%o A192446 /* _Joerg Arndt_, Jun 30 2011 */
%o A192446 (PARI)
%o A192446 seq(N) = {
%o A192446   my(x='x + O('x^N), d=16*x^6 + 16*x^5 + 16*x^4 - 8*x^3 - 4*x^2 + 1,
%o A192446      s=serreverse((1 - 2*x^2 + 2*x^3 - sqrt(d))/(6*x^2)));
%o A192446   Vec(sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3));
%o A192446 };
%o A192446 seq(26) \\ _Gheorghe Coserea_, Aug 06 2018
%Y A192446 Cf. A001850, A026641, A036355, A137644, A192364, A192365, A192369, A192368.
%K A192446 nonn
%O A192446 0,2
%A A192446 _Joerg Arndt_, Jul 01 2011