A192453 Numbers k such that -1 is a 4th power mod k.
1, 2, 17, 34, 41, 73, 82, 89, 97, 113, 137, 146, 178, 193, 194, 226, 233, 241, 257, 274, 281, 289, 313, 337, 353, 386, 401, 409, 433, 449, 457, 466, 482, 514, 521, 562, 569, 577, 578, 593, 601, 617, 626, 641, 673, 674, 697, 706, 761, 769, 802, 809, 818, 857
Offset: 1
Keywords
Examples
1^4 == -1 (mod 1). 2^4 == -1 (mod 17). 9^4 == -1 (mod 34). 3^4 == -1 (mod 41). 10^4 == -1 (mod 73).
Links
- Jianing Song, Table of n, a(n) for n = 1..4380 (all terms below 10^5)
Programs
-
Maple
select(n -> numtheory:-factorset(n) mod 8 subset {1,2}, [seq(seq(4*i+j,j=1..3),i=0..400)]); # Robert Israel, May 24 2019
-
Mathematica
Table[If[Reduce[x^4==-1,Modulus->n]===False,Null,n],{n,2,1000}]//Union
-
PARI
for(n=1,1e3,if(ispower(Mod(-1,n),4),print1(n", "))) \\ Charles R Greathouse IV, Jul 03 2011
Comments