This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192464 #24 Nov 23 2021 02:28:32 %S A192464 2,4,7,16,38,95,242,624,1619,4216,11002,28747,75170,196652,514607, %T A192464 1346880,3525566,9229063,24160402,63250168,165586907,433505384, %U A192464 1134920882,2971243731,7778788418,20365086100,53316412567,139584058864,365435613974,956722540271 %N A192464 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n). %C A192464 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. The coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n) is 2*A051450. %H A192464 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,1,3,-1). %F A192464 G.f.: -x*(3*x^4-7*x^3-x^2+6*x-2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). - _Colin Barker_, Nov 12 2012 %F A192464 a(n) = 1 - Fibonacci(n) + Fibonacci(1+n) - Fibonacci(2n) + Fibonacci(1+2n). - _Friedjof Tellkamp_, Nov 22 2021 %e A192464 The first four polynomials p(n,x) and their reductions are as follows: %e A192464 p(1,x) = 1 + x + x^2 -> 2 + 2x %e A192464 p(2,x) = 1 + x^2 + x^4 -> 4 + 4x %e A192464 p(3,x) = 1 + x^3 + x^6 -> 7 + 10x %e A192464 p(4,x) = 1 + x^4 + x^8 -> 16 + 24x. %e A192464 From these, read %e A192464 A192464 = (2, 4, 7, 16, ...) and 2*A051450 = (2, 4, 10, 24, ...). %t A192464 Remove["Global`*"]; %t A192464 q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n); %t A192464 Table[Simplify[p[n, x]], {n, 1, 5}] %t A192464 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192464 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192464 t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}] %t A192464 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] %t A192464 (* A192464 *) %t A192464 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] %t A192464 (* 2*A051450 *) %t A192464 Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] %t A192464 (* A051450 *) %t A192464 Table[1-Fibonacci[n]+Fibonacci[1+n]-Fibonacci[2n]+Fibonacci[1+2n], {n, 1, 29}] %t A192464 (* _Friedjof Tellkamp_, Nov 22 2021 *) %Y A192464 Cf. A000045, A192232, A051450. %K A192464 nonn,easy %O A192464 1,1 %A A192464 _Clark Kimberling_, Jul 01 2011