A192466 Coefficient of x in the reduction by x^2->x+2 of the polynomial p(n,x)=1+x^n+x^(2n).
2, 6, 24, 90, 352, 1386, 5504, 21930, 87552, 349866, 1398784, 5593770, 22372352, 89483946, 357924864, 1431677610, 5726666752, 22906579626, 91626143744, 366504225450, 1466016202752, 5864063412906, 23456250855424, 93824997829290
Offset: 1
Keywords
Examples
The first four polynomials p(n,x) and their reductions are as follows: p(1,x)=1+x+x^2 -> 3+2x p(2,x)=1+x^2+x^4 -> 9+6x p(3,x)=1+x^3+x^6 -> 25+24x p(4,x)=1+x^4+x^8 -> 93+90x. From these, read A192465=(3,9,25,93,...) and A192466=(2,6,24,90,...)
Links
- Yuanan Diao, Michael Finney, and Dawn Ray, The number of oriented rational links with a given deficiency number, arXiv:2007.02819 [math.GT], 2020. See p. 16.
Programs
-
Mathematica
(See A192465.)
Formula
Empirical G.f.: -2*x*(x^2 - 3*x + 1) / ((x - 1)*(x + 1)*(2*x - 1)*(4*x - 1)). - Colin Barker, Nov 12 2012
Conjectures from Colin Barker, Feb 14 2017: (Start)
a(n) = (-1 - (-1)^n + 2^n + 4^n) / 3.
a(n) = 6*a(n-1) - 7*a(n-2) - 6*a(n-3) + 8*a(n-4) for n>4.
(End)
Comments