This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192468 #7 Nov 12 2012 09:55:04 %S A192468 4,16,61,304,1546,8107,42748,226240,1198645,6353944,33688474, %T A192468 178631251,947215924,5022815920,26634734125,141237718720,748951245034, %U A192468 3971518837243,21060069709228,111676816254688,592197081386533,3140288211876136 %N A192468 Constant term of the reduction by x^2->x+3 of the polynomial p(n,x)=1+x^n+x^(2n). %C A192468 For an introduction to reductions of polynomials by substitutions such as x^2->x+3, see A192232. %F A192468 Empirical G.f.: -x*(81*x^4-87*x^3-x^2+20*x-4)/((x-1)*(3*x^2+x-1)*(9*x^2-7*x+1)). [_Colin Barker_, Nov 12 2012] %e A192468 The first four polynomials p(n,x) and their reductions are as follows: %e A192468 p(1,x)=1+x+x^2 -> 4+2x %e A192468 p(2,x)=1+x^2+x^4 -> 16+8x %e A192468 p(3,x)=1+x^3+x^6 -> 61+44x %e A192468 p(4,x)=1+x^4+x^8 -> 304+224x. %e A192468 From these, read %e A192468 A192468=(4,16,61,304,...) and A192469=(2,8,44,224,...) %t A192468 Remove["Global`*"]; %t A192468 q[x_] := x + 3; p[n_, x_] := 1 + x^n + x^(2 n); %t A192468 Table[Simplify[p[n, x]], {n, 1, 5}] %t A192468 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192468 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192468 t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}] %t A192468 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] %t A192468 (* A192468 *) %t A192468 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] %t A192468 (* A192469 *) %t A192468 Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] %t A192468 (* A192470 *) %Y A192468 Cf. A192232, A192468, A192464, A192465. %K A192468 nonn %O A192468 1,1 %A A192468 _Clark Kimberling_, Jul 01 2011