This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192471 #7 Nov 12 2012 10:30:28 %S A192471 2,5,10,24,59,150,386,1001,2606,6800,17767,46458,121538,318045,832418, %T A192471 2178920,5703875,14931950,39090754,102338337,267921062,701419680, %U A192471 1836329615,4807555634,12586315394,32951355125,86267692666,225851630136 %N A192471 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x)=1+x^n+x^(2n+1). %C A192471 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. %F A192471 Empirical G.f.: -x*(2*x-1)*(x^3-3*x^2-x+2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). [_Colin Barker_, Nov 12 2012] %e A192471 The first four polynomials p(n,x) and their reductions are as follows: %e A192471 p(1,x)=1+x+x^3 -> 2+3x %e A192471 p(2,x)=1+x^2+x^5 -> 5+6x %e A192471 p(3,x)=1+x^3+x^7 -> 10+15x %e A192471 p(4,x)=1+x^4+x^9 -> 24+37x. %e A192471 From these, read %e A192471 A192471=(2,5,10,24,...) and A087124=(3,6,15,37,...) %t A192471 Remove["Global`*"]; %t A192471 q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n+1); %t A192471 Table[Simplify[p[n, x]], {n, 1, 5}] %t A192471 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192471 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192471 t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}] %t A192471 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] %t A192471 (* A192471 *) %t A192471 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] %t A192471 (* A087124 *) %Y A192471 Cf. A192232. %K A192471 nonn %O A192471 1,1 %A A192471 _Clark Kimberling_, Jul 01 2011