This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192472 #7 Nov 12 2012 09:54:41 %S A192472 3,7,15,37,93,239,619,1611,4203,10981,28713,75115,196563,514463, %T A192472 1346647,3525189,9228453,24159415,63248571,165584323,433501203, %U A192472 1134914117,2971232785,7778770707,20365057443,53316366199,139583983839,365435492581 %N A192472 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x)=1+x^n+x^(2n+2). %C A192472 For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. %F A192472 Empirical G.f.: -x*(3*x^4-8*x^3-x^2+8*x-3)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). [_Colin Barker_, Nov 12 2012] %e A192472 The first four polynomials p(n,x) and their reductions are as follows: %e A192472 p(1,x)=1+x+x^4 -> 3+4x %e A192472 p(2,x)=1+x^2+x^6 -> 7+9x %e A192472 p(3,x)=1+x^3+x^8 -> 15+23x %e A192472 p(4,x)=1+x^4+x^10 -> 37+58x. %e A192472 From these, read %e A192472 A192472=(3,7,15,37,...) and A192473=(4,9,23,58,...) %t A192472 Remove["Global`*"]; %t A192472 q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n+2); %t A192472 Table[Simplify[p[n, x]], {n, 1, 5}] %t A192472 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), %t A192472 x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192472 t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}] %t A192472 Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] %t A192472 (* A192472 *) %t A192472 Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] %t A192472 (* A192473 *) %Y A192472 Cf. A192232, A192473. %K A192472 nonn %O A192472 1,1 %A A192472 _Clark Kimberling_, Jul 01 2011