This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192508 #14 May 10 2024 08:52:20 %S A192508 0,0,4,8,54,140,1116,2976,19828,58388,443892,1036180,9390024,27996724, %T A192508 175396812 %N A192508 Number of conjugacy classes of primitive elements in GF(5^n) which have trace 0. %C A192508 Also number of primitive polynomials of degree n over GF(5) whose second-highest coefficient is 0. %F A192508 a(n) = A192213(n) / n %o A192508 (GAP) %o A192508 p := 5; %o A192508 a := function(n) %o A192508 local q, k, cnt, x; %o A192508 q:=p^n; k:=GF(p, n); cnt:=0; %o A192508 for x in k do %o A192508 if Trace(k, GF(p), x)=0*Z(p) and Order(x)=q-1 then %o A192508 cnt := cnt+1; %o A192508 fi; %o A192508 od; %o A192508 return cnt/n; %o A192508 end; %o A192508 for n in [1..16] do Print (a(n), ", "); od; %o A192508 (Sage) # See A192507 (change first line p=3 to p=5) %Y A192508 Cf. A152049 (GF(2^n)), A192507 (GF(3^n)), A192509 (GF(7^n)), A192510 (GF(11^n)), A192511 (GF(13^n)). %K A192508 nonn,hard,more %O A192508 1,3 %A A192508 _Joerg Arndt_, Jul 03 2011 %E A192508 Added terms 19828..443892, _Joerg Arndt_, Oct 03 2012 %E A192508 a(12)-a(15) from _Robin Visser_, May 10 2024