This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192509 #22 Jun 02 2024 11:04:54 %S A192509 0,0,3,20,160,846,5426,27360,196740,1215548,8552408,37330020 %N A192509 Number of conjugacy classes of primitive elements in GF(7^n) which have trace 0. %C A192509 Also number of primitive polynomials of degree n over GF(7) whose second-highest coefficient is 0. %F A192509 a(n) = A192214(n) / n. %o A192509 (GAP) %o A192509 p := 7; %o A192509 a := function(n) %o A192509 local q, k, cnt, x; %o A192509 q:=p^n; k:=GF(p, n); cnt:=0; %o A192509 for x in k do %o A192509 if Trace(k, GF(p), x)=0*Z(p) and Order(x)=q-1 then %o A192509 cnt := cnt+1; %o A192509 fi; %o A192509 od; %o A192509 return cnt/n; %o A192509 end; %o A192509 for n in [1..16] do Print (a(n), ", "); od; %o A192509 (Sage) # See A192507 (change first line p=3 to p=7) %Y A192509 Cf. A152049 (GF(2^n)), A192507 (GF(3^n)), A192508 (GF(5^n)), A192510 (GF(11^n)), A192511 (GF(13^n)). %K A192509 nonn,hard,more %O A192509 1,3 %A A192509 _Joerg Arndt_, Jul 03 2011 %E A192509 a(7)-a(9) from _Joerg Arndt_, Oct 14 2012 %E A192509 a(10)-a(12) from _Robin Visser_, Jun 01 2024