This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192517 #37 May 14 2018 17:00:47 %S A192517 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,3,3,1,0,1,1,3,6,4,1,0,1,1,3,7,11,5, %T A192517 1,0,1,1,3,8,17,18,7,1,0,1,1,3,8,21,35,32,8,1,0,1,1,3,8,22,52,76,48, %U A192517 10,1,0,1,1,3,8,23,60,132,149,75,12,1,0 %N A192517 Table read by antidiagonals: T(n,k) = number of multigraphs with n vertices and k edges, with no loops allowed (n >= 1, k >= 0). %C A192517 Rows converge to sequence A050535, i.e. T(n,k) = A050535(k) for n >= 2k. %D A192517 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 171. %H A192517 Andrew Howroyd, <a href="/A192517/b192517.txt">Table of n, a(n) for n = 1..1275</a> (terms 1..78 from Alberto Tacchella computed using <a href="http://users.cecs.anu.edu.au/~bdm/nauty/">nauty 2.4</a>, terms 79..595 from Sean A. Irvine computed using cycle index method of Harary and Palmer). %H A192517 R. J. Mathar, <a href="http://arxiv.org/abs/1709.09000">Statistics on Small Graphs</a>, arXiv:1709.09000 [math.CO] (2017), Table 69. %e A192517 Table begins: %e A192517 [1,0,0,0,0,0,0,0,0,...], %e A192517 [1,1,1,1,1,1,1,1,1,...], %e A192517 [1,1,2,3,4,5,7,8,10,...], %e A192517 [1,1,3,6,11,18,32,48,75,...], %e A192517 [1,1,3,7,17,35,76,149,291,...], %e A192517 [1,1,3,8,21,52,132,313,741,...], %e A192517 [1,1,3,8,22,60,173,471,1303,...], %e A192517 [1,1,3,8,23,64,197,588,1806,...], %e A192517 ... %o A192517 (PARI) \\ See A191646 for G function. %o A192517 R(n)={Mat(vectorv(n, k, concat([1], G(k, n-1))))} %o A192517 { my(A=R(10)); for(n=1, #A, for(k=1, #A, print1(A[n,k], ", "));print) } \\ _Andrew Howroyd_, May 14 2018 %Y A192517 Cf. A008406, A191646, A003082 (row 4), A014395 (row 5), A014396 (row 6). %K A192517 nonn,tabl %O A192517 1,13 %A A192517 _Alberto Tacchella_, Jul 03 2011