This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192555 #14 Apr 19 2024 10:28:55 %S A192555 1,0,2,18,302,7770,285182,14169498,916379102,74833699770, %T A192555 7532323742462,916288114073178,132533661862902302, %U A192555 22482642651307262970,4420834602574484743742,997471931914411955132058,255978001773528747607767902,74137405656663750753878861370 %N A192555 a(n) = Sum_{k=0..n} Stirling2(n+1, k+1)*(-1)^(n-k)*k!^2. %C A192555 This sequence is the Akiyama-Tanigawa transform of the factorial numbers. - _Peter Luschny_, Apr 19 2024 %F A192555 a(n) = (-1)^n * Sum_{k=0..n} A163626(n, k)*k!. - _Philippe Deléham_, May 25 2015 %F A192555 a(n) ~ exp(-1/2) * n!^2. - _Vaclav Kotesovec_, Jul 05 2021 %p A192555 ATFactorial := proc(len) %p A192555 local k, j, A, R, F; F := 1; %p A192555 for k from 0 to len do %p A192555 R[k] := F; F := F * (k + 1); %p A192555 for j from k by -1 to 1 do %p A192555 R[j - 1] := j * (R[j] - R[j-1]) %p A192555 od; %p A192555 A[k] := R[0]; %p A192555 od; convert(A, list) end: %p A192555 ATFactorial(17); # _Peter Luschny_, Apr 19 2024 %t A192555 Table[Sum[StirlingS2[n+1,k+1](-1)^(n-k)k!^2,{k,0,n}],{n,0,100}] %o A192555 (Maxima) makelist(sum(stirling2(n+1,k+1)*(-1)^(n-k)*k!^2,k,0,n),n,0,24); %Y A192555 Cf. A000142, A163626. %K A192555 nonn %O A192555 0,3 %A A192555 _Emanuele Munarini_, Jul 04 2011