A192592 Monotonic ordering of set S generated by these rules: if x and y are in S and 3x+2y is a prime, then 3x+2y is in S, and 1 is in S.
1, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..609
Programs
-
Mathematica
start = {1}; primes = Table[Prime[n], {n, 1, 10000}]; f[x_, y_] := If[MemberQ[primes, 2 x + 3 y], 2 x + 3 y] b[x_] := Block[{w = x}, Select[Union[ Flatten[AppendTo[w, Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, Length[w]}]]]], # < 1000 &]]; t = FixedPoint[b, start] (* A192592 *) PrimePi[t] (* A192593 *)
Comments