A192594 Monotonic ordering of set S generated by these rules: if x and y are in S and 5x+2y is a prime, then 5x+2y is in S, and 1 is in S.
1, 7, 19, 37, 43, 73, 79, 97, 109, 151, 163, 181, 193, 199, 223, 229, 241, 271, 307, 313, 331, 337, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 613, 619, 631, 643, 661, 673, 691, 709, 727, 739, 751, 757, 769
Offset: 1
Keywords
Programs
-
Mathematica
start = {1}; primes = Table[Prime[n], {n, 1, 1000}]; f[x_, y_] := If[MemberQ[primes, 5 x + 2 y], 5 x + 2 y] b[x_] := Block[{w = x}, Select[Union[ Flatten[AppendTo[w, Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, Length[w]}]]]], # < 2000 &]]; t = FixedPoint[b, start] (* A192594 *) PrimePi[t] (* A192595 *)
Comments