A192616 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+x+1. See Comments.
1, 0, 1, 1, 2, 6, 10, 29, 57, 142, 309, 720, 1625, 3714, 8457, 19259, 43902, 99970, 227830, 518943, 1182401, 2693624, 6136837, 13980960, 31851853, 72565704, 165320833, 376638417, 858066430, 1954869262, 4453630790, 10146374277, 23115721705
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions: F1(x)=1 -> 1 F2(x)=x -> x F3(x)=x^2+1 -> x^2+1 F4(x)=x^3+2x -> x^2+3x+1 F5(x)=x^4+3x^2+1 -> 4x^2+2x+2, so that A192616=(1,0,1,1,2,...), A192617=(0,1,0,3,2,...), A192651=(0,0,1,1,5,...)
Links
- Index entries for linear recurrences with constant coefficients, signature (1,4,-1,-4,1,1).
Programs
-
Mathematica
q = x^3; s = x^2 + x + 1; z = 40; p[n_, x_] := Fibonacci[n, x]; Table[Expand[p[n, x]], {n, 1, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192616 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192617 *) u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192651 *)
Formula
a(n) = a(n-1)+4*a(n-2)-a(n-3)-4a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(x^4+x^3-3*x^2-x+1)/(x^6+x^5-4*x^4-x^3+4*x^2+x-1). [Colin Barker, Jul 27 2012]
Comments