A192628 Nonvanishing exponents of the reciprocal of the modulo 2 generating function for the sum-of-divisor function.
0, 1, 3, 7, 9, 11, 19, 25, 43, 49, 55, 59, 67, 71, 75, 81, 83, 87, 99, 103, 107, 119, 121, 131, 139, 147, 163, 169, 171, 179, 183, 211, 225, 227, 243, 251, 263, 275, 279, 283, 289, 307, 331, 343, 347, 361, 363, 375, 379, 387, 391, 419, 439, 441, 443, 455
Offset: 0
Keywords
References
- J. Cooper, D. Eichhorn, and K. O'Bryant, Reciprocals of binary power series, International Journal of Number Theory, 2 no. 4 (2006), 499-522.
Links
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8
Crossrefs
Cf. A028982.
Programs
-
Sage
prec = 2^14 R = PowerSeriesRing(GF(2), 'q', default_prec = prec) q = R.gen() def sigma(n): return sum(Integer(n).divisors()) def BPS(n): #binary power series return sum([q^s for s in n]) sigmaList = [0] + [n for n in range(1, prec) if mod(sigma(n), 2) == 1] sigmaSeries = BPS(sigmaList) print((1/sigmaSeries).exponents()[:128])
Comments