cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192630 Denominators of the Fermat-Euler rational Diophantine m-tuple.

This page as a plain text file.
%I A192630 #21 Jun 01 2024 23:52:00
%S A192630 1,1,1,1,1,8288641
%N A192630 Denominators of the Fermat-Euler rational Diophantine m-tuple.
%C A192630 Fermat gave the integer Diophantine m-tuple 1, 3, 8, 120 (see A030063): 1 + the product of any two distinct terms is a square. Euler added the rational number 777480/8288641.
%C A192630 Stoll proved that an extension of Fermat's set to a rational quintuple with the same property is unique. - _Andrej Dujella_, May 12 2024
%C A192630 Numerators are A192629.
%C A192630 See A030063 and A192629 for additional comments, references, and links.
%H A192630 Michael Stoll, <a href="https://doi.org/10.4064/aa180416-4-10">Diagonal genus 5 curves, elliptic curves over Q(t), and rational diophantine quintuples</a>, Acta Arith. 190 (2019), 239-261.
%e A192630 0/1, 1/1, 3/1, 8/1, 120/1, 777480/8288641.
%e A192630 1 + 1*(777480/8288641) = (3011/2879)^2.
%Y A192630 Cf. A030063, A192629, A192631, A192632.
%K A192630 nonn,fini,full,frac
%O A192630 0,6
%A A192630 _Jonathan Sondow_, Jul 06 2011