This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192645 #15 Sep 14 2018 09:56:44 %S A192645 1,2,3,5,8,16,21,24,39,55,60,63,135,185,192,231,247,252,255,320,369, %T A192645 377,416,432,437,440,512,551,567,572,575,944,945,1080,1265,1457,1496, %U A192645 1504,1512,1517,1520,1521,1889,2079,2448,2449,2495,2584,2631,2639 %N A192645 Monotonic ordering of set S generated by these rules: if x and y are in S and x^2 - y^2 > 0 then x^2 - y^2 is in S, and 1 and 2 are in S. %C A192645 See A192476 for a general discussion. Related sequences: %C A192645 A192645: f(x,y) = x^2 - y^2 > 0, start={1,2}; %C A192645 A192647: f(x,y) = x^2 - y^2 > 0, start={1,3}; %C A192645 A192648: f(x,y) = x^2 - y^2 > 0, start={2,3}; %C A192645 A192649: f(x,y) = x^2 - y^2 > 0, start={1,2,4}. %H A192645 Ivan Neretin, <a href="/A192645/b192645.txt">Table of n, a(n) for n = 1..10000</a> %e A192645 2^2 - 1^2 = 3; %e A192645 3^2 - 2^2 = 5, 3^2 - 1^2 = 8; %e A192645 5^2 - 3^2 = 16, 5^2 - 2^2 = 21, 5^2 - 1^2 = 24. %e A192645 Taking the generating procedure in the order just indicated results in the monotonic ordering of the sequence and also suggests a triangular format for the generated terms: %e A192645 3; %e A192645 5, 8; %e A192645 16, 21, 24; %e A192645 39, 55, 60, 63; %e A192645 135, 185, 192, 231, 247; %e A192645 ... %t A192645 start = {1, 2}; %t A192645 f[x_, y_] := If[MemberQ[Range[1, 5000], x^2 - y^2], x^2 - y^2] %t A192645 b[x_] := %t A192645 Block[{w = x}, %t A192645 Select[Union[ %t A192645 Flatten[AppendTo[w, %t A192645 Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, i}]]]], # < %t A192645 5000 &]]; %t A192645 t = FixedPoint[b, start] (* A192645 *) %t A192645 Differences[t] (* A192646 *) %Y A192645 Cf. A192476, A192646 (first differences). %K A192645 nonn %O A192645 1,2 %A A192645 _Clark Kimberling_, Jul 06 2011