A192651 Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+x+1. See Comments.
0, 0, 1, 1, 5, 8, 23, 47, 113, 252, 578, 1316, 2994, 6832, 15545, 35445, 80711, 183928, 418973, 954571, 2174681, 4954436, 11287336, 25715016, 58584744, 133468980, 304072713, 692745597, 1578230845, 3595564360, 8191505015, 18662090915
Offset: 1
Examples
The first five polynomials p(n,x) and their reductions are as follows: F1(x)=1 -> 1 F2(x)=x -> x F3(x)=x^2+1 -> x^2+1 F4(x)=x^3+2x -> x^2+3x+1 F5(x)=x^4+3x^2+1 -> 4x^2+2x+2, so that A192616=(1,0,1,1,2,...), A192617=(0,1,0,3,2,...), A192651=(0,0,1,1,5,...)
Links
- Index entries for linear recurrences with constant coefficients, signature (1,4,-1,-4,1,1).
Programs
-
Mathematica
(See A192616.)
Formula
a(n) = a(n-1)+4*a(n-2)-a(n-3)-4a(n-4)+a(n-5)+a(n-6).
G.f.: -x^3/(x^6+x^5-4*x^4-x^3+4*x^2+x-1). [Colin Barker, Jul 27 2012]
Comments