cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192667 E.g.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^3 - 1)^n/n!.

This page as a plain text file.
%I A192667 #17 Feb 26 2014 09:35:07
%S A192667 1,1,6,99,2616,95625,4468608,254426571,17087348736,1322490908817,
%T A192667 115902895680000,11345706419279859,1226971723559141376,
%U A192667 145275861381024623769,18691551435638516649984,2596726179631913433046875,387404350400960574932385792
%N A192667 E.g.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^3 - 1)^n/n!.
%F A192667 E.g.f. A(x) equals the formal inverse of function (x-1)/exp(x^3-1).
%F A192667 E.g.f. satisfies: A(x) = 1 + x*exp(A(x)^3-1).
%F A192667 E.g.f.: A(x) = 1 + Series_Reversion( x/exp((1+x)^3 - 1) ).
%F A192667 E.g.f. satisfies: A(x/G(x)) = 1 + x where G(x) = exp((1+x)^3 - 1) and G(x) = x/Series_Reversion(A(x)-1) = e.g.f. of A192989.
%F A192667 a(n) ~ n^(n-1) / (3*sqrt(s*(1+s^2)) * exp(n) * r^n), where s = 1/9*(3 + (297/2 - (81*sqrt(13))/2)^(1/3) + 3*((1/2)*(11 + 3*sqrt(13)))^(1/3)) = 1.2228950301592487561... is the root of the equation 3*(s-1)*s^2 = 1, and r = (s-1)*exp(1-s^3) = 0.097309376917122928890... - _Vaclav Kotesovec_, Feb 26 2014
%e A192667 E.g.f.: A(x) = 1 + x + 6*x^2/2! + 99*x^3/3! + 2616*x^4/4! +...
%e A192667 where (A(x) - 1)/exp(A(x)^3-1) = x
%e A192667 and A(x/G(x)) = 1 + x where G(x) = exp(3*x + 3*x^2 + x^3):
%e A192667 G(x) = 1 + 3*x + 15*x^2/2! + 87*x^3/3! + 585*x^4/4! + 4383*x^5/5! +...
%e A192667 Related expansions.
%e A192667 (A(x)^3-1) = 3*x + 24*x^2/2! + 411*x^3/3! + 11088*x^4/4!  + 410175*x^5/5! +...
%e A192667 (A(x)^3-1)^2 = 18*x^2/2! + 432*x^3/3! + 13320*x^4/4! + 529920*x^5/5! +...
%e A192667 (A(x)^3-1)^3 = 162*x^3/3! + 7776*x^4/4! + 377460*x^5/5! +...
%e A192667 (A(x)^3-1)^4 = 1944*x^4/4! + 155520*x^5/5! +...
%t A192667 CoefficientList[1 + InverseSeries[Series[x/E^((1+x)^3 - 1), {x, 0, 20}], x],x]*Range[0, 20]! (* _Vaclav Kotesovec_, Feb 26 2014 *)
%o A192667 (PARI) {a(n)=local(A=1+serreverse(x/exp(3*x+3*x^2+x^3+x^2*O(x^n))));n!*polcoeff(A,n)}
%o A192667 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*exp(A^3-1+x*O(x^n))); n!*polcoeff(A, n)}
%o A192667 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*sum(m=0,n,(A^3-1+x*O(x^n))^m/m!));n!*polcoeff(A,n)}
%Y A192667 Cf. A192949, A192989.
%K A192667 nonn
%O A192667 0,3
%A A192667 _Paul D. Hanna_, Jul 13 2011