cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192668 Floor-Sqrt transform of superfactorials (A000178).

This page as a plain text file.
%I A192668 #17 Apr 09 2021 02:51:01
%S A192668 1,1,1,3,16,185,4988,354134,71109667,42836123450,81600285441318,
%T A192668 515548511098996334,11283348939893661586501,
%U A192668 890385701589932763452676123,262895016275494870674135139820802,300629890583706167610723324054426034948
%N A192668 Floor-Sqrt transform of superfactorials (A000178).
%H A192668 Mohammad K. Azarian, <a href="http://www.ijpam.eu/contents/2007-36-2/9/9.pdf">On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials</a>, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
%F A192668 a(n) = floor(sqrt(Product_{k=0..n} k!)).
%t A192668 Table[Floor[Sqrt[Product[k!,{k,0,n}]]],{n,0,18}]
%o A192668 (Maxima) makelist(floor(sqrt(product(k!,k,0,n))),n,0,12);
%o A192668 (PARI) a(n) = sqrtint(prod(k=0, n, k!)); \\ _Michel Marcus_, Apr 08 2021
%Y A192668 Cf. A192660-A192665, A192668-A192685.
%K A192668 nonn
%O A192668 0,4
%A A192668 _Emanuele Munarini_, Jul 07 2011
%E A192668 Definition corrected by _Georg Fischer_, Apr 08 2021