A210450 Numbers n such that 16n + 7 is in A192628.
0, 3, 4, 5, 6, 7, 11, 16, 17, 21, 23, 24, 27, 28, 32, 34, 35, 36, 38, 39, 40, 43, 44, 45, 47, 48, 49, 51, 53, 54, 55, 56, 59, 60, 63, 65, 67, 68, 69, 70, 72, 73, 74, 76, 77, 79, 81, 82, 85, 86, 89, 93, 96, 97, 98, 100, 102, 103, 105, 106, 107, 109, 110
Offset: 1
Keywords
Links
- J. N. Cooper, D. Eichhorn, and K. O'Bryant, Reciprocals of binary power series, arXiv:math/0506496 [math.NT], 2005.
- J. N. Cooper, D. Eichhorn, and K. O'Bryant, Reciprocals of binary power series, International Journal of Number Theory, 2 no. 4 (2006), 499-522.
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012.
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, Journal of Integer Sequences, Vol. 16 (2013), #13.1.8.
Programs
-
Sage
prec = 2^12 R = PowerSeriesRing(GF(2), 'q', default_prec = prec) q = R.gen() sigma = lambda x : 1 if x == 0 else sum(Integer(x).divisors()) SigmaSeries = sum([sigma(m)*q^m for m in range(prec)]) SigmaBarSeries = 1/SigmaSeries SigmaBarList = SigmaBarSeries.exponents() reduced = [(m-7)/16 for m in SigmaBarList if mod(m, 8) == 7] print(reduced[:128])
Comments