This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192722 #29 Feb 15 2025 05:36:22 %S A192722 1,1,4,1,18,36,1,68,432,576,1,250,3900,14400,14400,1,922,32400,252000, %T A192722 648000,518400,1,3430,262542,3880800,19404000,38102400,25401600,1, %U A192722 12868,2119152,56664384,493920000,1795046400,2844979200,1625702400 %N A192722 T(n,k) = Sum of multinomial(n; n_1,n_2,...,n_k)^2, where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts. %C A192722 Compare with triangle A019538, whose entries are given by %C A192722 ... Sum multinomial(n; n_1,n_2,...,n_k), where the sum extends over all compositions (n_1,n_2,...,n_k) of n into exactly k nonnegative parts. %C A192722 For related tables see A061691 and A192721. %C A192722 Let P be the poset of all ordered pairs (S,T) of subsets of [n] with |S|=|T|, ordered componentwise by inclusion. T(n,k) is the number of length k chains in P from ({},{}) to ([n],[n]). - _Geoffrey Critzer_, Apr 15 2020 %H A192722 Alois P. Heinz, <a href="/A192722/b192722.txt">Rows n = 1..100, flattened</a> %F A192722 Generating function: Let J(z) = Sum_{n>=0} z^n/n!^2. Then %F A192722 1 + Sum_{n>=1} (Sum_{k = 1..n} T(n,k)*x^k)*z^n/n!^2 = 1/(1 - x*(J(z) - 1)) %F A192722 = 1 + x*z + (x + 4*x^2)*z^2/2!^2 + (x + 18*x^2 + 36*x^3)*z^3/3!^2 + .... %F A192722 Relations with other sequences: %F A192722 The change of variable z -> z/x followed by x -> 1/(x - 1) transforms the above bivariate generating function 1/(1 - x*(J(z) - 1)) into (1 - x)/(-x + J(z*(x-1))), which is the generating function for A192721. %F A192722 1/k!*T(n,k) = A061691(n,k). %F A192722 T(n,n) = n!^2 = A001044(n). %F A192722 Row sums = A102221. %F A192722 For n>=1, Sum_{k = 1..n} (-1)^(n+k)*T(n,k)/k = A002190(n). %e A192722 The triangle begins %e A192722 n/k|..1.....2.......3........4........5........6 %e A192722 ================================================ %e A192722 .1.|..1 %e A192722 .2.|..1.....4 %e A192722 .3.|..1....18.....36 %e A192722 .4.|..1....68.....432......576 %e A192722 .5.|..1...250....3900....14400....14400 %e A192722 .6.|..1...922...32400...252000...648000...518400 %e A192722 ... %e A192722 T(4,2) = 68: %e A192722 There are 3 compositions of 4 into 2 parts, namely, 4 = 2 + 2 = 1 + 3 = 3 + 1; hence %e A192722 T(4,2) = (4!/(2!*2!))^2 + (4!/(1!*3!))^2 + (4!/(3!*1!))^2 %e A192722 = 36 + 16 + 16 = 68. %e A192722 Matrix identity: A192721 * Pascal's triangle = row reverse of A192722: %e A192722 /...1................\ /..1..............\ %e A192722 |...3.....1...........||..1....1..........| %e A192722 |..19....16.....5.....||..1....2....1.....| %e A192722 |.211...299....65....1||..1....3....3....1| %e A192722 |.....................||..................| %e A192722 = %e A192722 /...1...................\ %e A192722 |...4......1.............| %e A192722 |..36.....18......1......| %e A192722 |.576....432.....68.....1| %e A192722 |........................| %p A192722 J := unapply(BesselJ(0, 2*sqrt(-1)*sqrt(z)), z): %p A192722 G := 1/(1-x*(J(z)-1)): %p A192722 Gser := simplify(series(G, z = 0, 15)): %p A192722 for n from 1 to 14 do %p A192722 P[n] := n!^2*sort(coeff(Gser, z, n)) od: %p A192722 for n from 1 to 14 do seq(coeff(P[n], x, k), k = 1..n) od; %p A192722 # yields sequence in triangular form %p A192722 # second Maple program: %p A192722 b:= proc(n) option remember; expand( %p A192722 `if`(n=0, 1, add(x*b(n-i)/i!^2, i=1..n))) %p A192722 end: %p A192722 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)*n!^2): %p A192722 seq(T(n), n=1..14); # _Alois P. Heinz_, Sep 10 2019 %t A192722 b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x b[n-i]/i!^2, {i, 1, n}]]]; %t A192722 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n] n!^2]; %t A192722 Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Dec 07 2019, after _Alois P. Heinz_ *) %Y A192722 Cf. A001044, A002190, A061691, A192721, A102221 (row sums), A000275 (alternating row sums). %K A192722 nonn,easy,tabl %O A192722 1,3 %A A192722 _Peter Bala_, Jul 11 2011