This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192731 #28 Jun 11 2018 05:11:38 %S A192731 -744,80256,-12288744,2126816256,-392642298600,75506620496256, %T A192731 -14935073808384744,3015675387953504256,-618587635244888064744, %U A192731 128473308888136855075200,-26951900214112779571200744 %N A192731 Euler transform is 1 / (q j(q)) where j is j-function (A000521). %H A192731 Seiichi Manyama, <a href="/A192731/b192731.txt">Table of n, a(n) for n = 1..424</a> %H A192731 B. Brent, <a href="http://mathoverflow.net/questions/69365/">p-adic continuity for exponents in product decomposition of the j-invariant</a>, Answer 3 by W. Zudilin %H A192731 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A192731 1 / (q j(q)) = Product_{k>0} (1 - x^k)^-a(k). %F A192731 a(n) = 3*(A110163(n) - 8) = (1/n) * Sum_{d|n} A008683(n/d) * A288261(d). - _Seiichi Manyama_, Jun 18 2017 %F A192731 a(n) ~ (-1)^n * 3*exp(Pi*sqrt(3)*n) / n. - _Vaclav Kotesovec_, Mar 24 2018 %e A192731 From _Seiichi Manyama_, Jun 18 2017: (Start) %e A192731 a(1) = (1/1) * A008683(1/1) * A288261(1) = (1/1) * (-744) = -744, %e A192731 a(2) = (1/2) * (A008683(2/1) * A288261(1) + A008683(2/2) * A288261(2)) = (1/2) * (744 + 159768) = 80256. (End) %o A192731 (PARI) {a(n) = local(A, S); if( n<1, 0, A = 1 + x * O(x^n); S = x * ellj( x * A ); for( k = 1, n-1, S *= (A - x^k) ^ polcoeff( S, k)); - polcoeff( S, n))} %Y A192731 Cf. A008683, A063995, A110163, A192732, A288261, A302407, A305757. %K A192731 sign %O A192731 1,1 %A A192731 _Michael Somos_, Jul 08 2011