This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192734 #28 Jul 22 2025 12:15:34 %S A192734 7,21,273,16401,1048593,4295032833,1099512676353,9007199256838145, %T A192734 302231455185132270387201,1208944266358702884257793, %U A192734 1329227995784915872903807060297121793,1393796574908163946347162983661240005427201 %N A192734 Smallest number having binary weight of 3 and n distinct prime factors. %C A192734 Written in binary, these numbers have exactly three 1 bits and the other bits are all 0's. This means that these numbers are of the sum of 1 plus two larger distinct powers of 2. - _Alonso del Arte_, Jul 08 2011 %C A192734 a(n) > A002110(n). [_Reinhard Zumkeller_, Jul 09 2011] %C A192734 Sequence is not monotone: a(12) > a(13). [_Charles R Greathouse IV_, Jul 11 2011] %H A192734 Charles R Greathouse IV, <a href="/A192734/b192734.txt">Table of n, a(n) for n = 1..14</a> %t A192734 list = {7}; For[max = 1; n = 2, n < 120, %t A192734 For[m = 0, m < n, %t A192734 tal = 2*(2^n + 2^m) + 1; num = PrimeNu[tal]; %t A192734 If[num > max, AppendTo[list, tal]; max = num] %t A192734 , m++], n++] (* Sarnbratt *) %t A192734 A084468 = Flatten[Table[2^m + 2^n + 1, {m, 2, 80}, {n, m - 1}]]; Flatten[Table[Take[Select[A084468, PrimeNu[#] == n &], 1], {n, 10}]] (* _Alonso del Arte_, Jul 08 2011 *) %o A192734 (PARI) a(n)={ %o A192734 my(t); %o A192734 for(a=2,9e9, %o A192734 t=1+1<<a; %o A192734 for(b=1,a-1, %o A192734 if(omega(t+1<<b)==n,return(t+1<<b)) %o A192734 ) %o A192734 ) %o A192734 }; \\ _Charles R Greathouse IV_, Jul 08 2011 %o A192734 (Haskell) %o A192734 a192734 n = head [x | x <- [2^u + 2^v + 1 | u <- [2..], v <- [1..u-1]], %o A192734 a001221 x == n] %o A192734 -- _Reinhard Zumkeller_, Jun 14 2015, Jul 09 2011 %Y A192734 Cf. A084468, A001221. %K A192734 nonn,base %O A192734 1,1 %A A192734 _Johan Särnbratt_, Jul 08 2011 %E A192734 a(9) corrected by _Charles R Greathouse IV_, Jul 08 2011 %E A192734 a(12) from _Charles R Greathouse IV_, Jul 11 2011