This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192744 #16 Dec 16 2015 04:29:03 %S A192744 1,1,3,8,29,133,762,5215,41257,369032,3676209,40333241,483094250, %T A192744 6271446691,87705811341,1314473334832,21017294666173,357096406209005, %U A192744 6424799978507178,122024623087820183,2439706330834135361,51219771117454755544 %N A192744 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. %C A192744 The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+n! for n>0, where p(0,x)=1; see the Example. For an introduction to polynomial reduction, see A192232. The discussion at A192232 Comments continues here: %C A192744 ... %C A192744 Let R(p,q,s) denote the "reduction of polynomial p by q->s" as defined at A192232. Suppose that q(x)=x^k for some k>0 and that s(x)=s(k,0)*x^(k-1)+s(k,1)*x^(k-2)+...+s(k,k-2)x+s(k,k-1). %C A192744 ... %C A192744 First, we shall take p(x)=x^n, where n>=0; the results will be used to formulate R(p,q,s) for general p. Represent R(x^n,q,s) by %C A192744 ... %C A192744 R(x^n)=s(n,0)*x^(k-1)+s(n,1)*x^(k-2)+...+s(n,k-2)*x+s(n,k-1). %C A192744 ... %C A192744 Then each of the sequences u(n)=s(n,h), for h=0,1,...,k-1, satisfies this linear recurrence relation: %C A192744 ... %C A192744 u(n)=s(k,0)*u(n-1)+s(k,1)*u(n-2)+...+s(k,k-2)*u(n-k-1)+s(k,k-1)*u(n-k), with initial values tabulated here: %C A192744 ... %C A192744 n: ..s(n,0)...s(n,1)..s(n,2).......s(n,k-2)..s(n,k-1) %C A192744 0: ....0........0.......0..............0.......1 %C A192744 1: ....0........0.......0..............1.......0 %C A192744 ... %C A192744 k-2: ..0........1.......0..............0.......0 %C A192744 k-1: ..0........0.......0..............0.......0 %C A192744 k: ..s(k,0)...s(k,1)..s(k,2).......s(k,k-2)..s(k,k-1) %C A192744 ... %C A192744 That completes the formulation for p(x)=x^n. Turning to the general case, suppose that %C A192744 ... %C A192744 p(n,x)=p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n-1)*x+p(n,n) %C A192744 ... %C A192744 is a polynomial of degree n>=0. Then the reduction denoted by (R(p(n,x) by x^k -> s(x)) is the polynomial of degree k-1 given by the matrix product P*S*X, where P=(p(n,0)...p(n,1).........p(n-k)...p(n,n-k+1); X has all 0's except for main diagonal (x^(k-1), x^(k-2)...x,1); and S has %C A192744 ... %C A192744 row 1: ... s(n,0) ... s(n,1) ...... s(n,k-2) . s(n,k-1) %C A192744 row 2: ... s(n-1,0) . s(n-1,1) .... s(n-1,k-2) s(n-1,k-1) %C A192744 ... %C A192744 row n-k+1: s(k,0).... s(k,1) ...... s(k,k-2) ..s(k,k-1) %C A192744 row n-k+2: p(n,n-k+1) p(n,n-k+2) .. p(n,n-1) ..p(n,n) %C A192744 ***** %C A192744 As a class of examples, suppose that (v(n)), for n>=0, is a sequence, that p(0,x)=1, and p(n,x)=v(n)+p(n-1,x) for n>0. If q(x)=x^2 and s(x)=x+1, and we write the reduction R(p(n,x)) as u1(n)*x+u2(n), then the sequences u1 and u2 are convolutions with the Fibonacci sequence, viz., let F=(0,1,1,2,3,5,8,...)=A000045 and let G=(1,0,1,1,2,3,5,8...); then u1=G**v and u2=F**v, where ** denotes convolution. Examples (with a few exceptions for initial terms): %C A192744 ... %C A192744 If v(n)=n! then u1=A192744, u2=A192745. %C A192744 If v(n)=n+1 then u1=A000071, u2=A001924. %C A192744 If v(n)=2n then u1=A014739, u2=A027181. %C A192744 If v(n)=2n+1 then u1=A001911, u2=A001891. %C A192744 If v(n)=3n+1 then u1=A027961, u2=A023537. %C A192744 If v(n)=3n+2 then u1=A192746, u2=A192747. %C A192744 If v(n)=3n then u1=A154691, u2=A192748. %C A192744 If v(n)=4n+1 then u1=A053311, u2=A192749. %C A192744 If v(n)=4n+2 then u1=A192750, u2=A192751. %C A192744 If v(n)=4n+3 then u1=A192752, u2=A192753. %C A192744 If v(n)=4n then u1=A147728, u2=A023654. %C A192744 If v(n)=5n+1 then u1=A192754, u2=A192755. %C A192744 If v(n)=5n then u1=A166863, u2=A192756. %C A192744 If v(n)=floor((n+1)tau) then u1=A192457, u2=A023611. %C A192744 If v(n)=floor((n+2)/2) then u1=A052952, u2=A129696. %C A192744 If v(n)=floor((n+3)/3) then u1=A004695, u2=A178982. %C A192744 If v(n)=floor((n+4)/4) then u1=A080239, u2=A192758. %C A192744 If v(n)=floor((n+5)/5) then u1=A124502, u2=A192759. %C A192744 If v(n)=n+2 then u1=A001594, u2=A192760. %C A192744 If v(n)=n+3 then u1=A022318, u2=A192761. %C A192744 If v(n)=n+4 then u1=A022319, u2=A192762. %C A192744 If v(n)=2^n then u1=A027934, u2=A008766. %C A192744 If v(n)=3^n then u1=A106517, u2=A094688. %F A192744 G.f.: (1-x)/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, May 20 2013 %F A192744 Conjecture: a(n) +(-n-2)*a(n-1) +2*(n-1)*a(n-2) +3*a(n-3) +(-n+2)*a(n-4)=0. - _R. J. Mathar_, May 04 2014 %F A192744 Conjecture: (-n+2)*a(n) +(n^2-n-1)*a(n-1) +(-n^2+3*n-3)*a(n-2) -(n-1)^2*a(n-3) %F A192744 =0. - _R. J. Mathar_, Dec 16 2015 %e A192744 The first five polynomials and their reductions: %e A192744 1 -> 1 %e A192744 1+x -> 1+x %e A192744 2+x+x^2 -> 3+2x %e A192744 6+2x+x^2+x^3 -> 8+5x %e A192744 24+6x+2x^2+x^3+x^4 -> 29+13x, so that %e A192744 A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...). %p A192744 A192744p := proc(n,x) %p A192744 option remember; %p A192744 if n = 0 then %p A192744 1; %p A192744 else %p A192744 x*procname(n-1,x)+n! ; %p A192744 expand(%) ; %p A192744 end if; %p A192744 end proc: %p A192744 A192744 := proc(n) %p A192744 local p; %p A192744 p := A192744p(n,x) ; %p A192744 while degree(p,x) > 1 do %p A192744 p := algsubs(x^2=x+1,p) ; %p A192744 p := expand(p) ; %p A192744 end do: %p A192744 coeftayl(p,x=0,0) ; %p A192744 end proc: # _R. J. Mathar_, Dec 16 2015 %t A192744 q = x^2; s = x + 1; z = 40; %t A192744 p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!; %t A192744 Table[Expand[p[n, x]], {n, 0, 7}] %t A192744 reduce[{p1_, q_, s_, x_}] := %t A192744 FixedPoint[(s PolynomialQuotient @@ #1 + %t A192744 PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192744 t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; %t A192744 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] %t A192744 (* A192744 *) %t A192744 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] %t A192744 (* A192745 *) %Y A192744 Cf. A192232. %K A192744 nonn %O A192744 0,3 %A A192744 _Clark Kimberling_, Jul 09 2011