This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192745 #15 Dec 03 2021 09:27:23 %S A192745 0,1,2,5,13,42,175,937,6152,47409,416441,4092650,44425891,527520141, %T A192745 6798966832,94504778173,1408978113005,22426272779178,379522678988183, %U A192745 6804322657495361,128828945745315544,2568535276579450905,53788306394034206449 %N A192745 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. %C A192745 The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+n! for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744. %F A192745 G.f.: x/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, May 20 2013 %F A192745 Conjecture: a(n) -n*a(n-1) +(n-2)*a(n-2) +(n-1)*a(n-3)=0. - _R. J. Mathar_, May 04 2014 %F A192745 a(n) = Sum_{k=0..n} k!*Fibonacci(n-k). - _Greg Dresden_, Dec 03 2021 %F A192745 a(n) ~ (n-1)!. - _Vaclav Kotesovec_, Dec 03 2021 %e A192745 The first six polynomials and their reductions are shown here: %e A192745 1 -> 1 %e A192745 1+x -> 1+x %e A192745 2+x+x^2 -> 3+2x %e A192745 6+2x+x^2+x^3 -> 8+5x %e A192745 24+6x+2x^2+x^4+x^5 -> 29+13x %e A192745 From those, read A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...). %t A192745 (See A192744.) %Y A192745 A192744, A192232. %K A192745 nonn %O A192745 0,3 %A A192745 _Clark Kimberling_, Jul 09 2011