A192748 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 4, 11, 24, 47, 86, 151, 258, 433, 718, 1181, 1932, 3149, 5120, 8311, 13476, 21835, 35362, 57251, 92670, 149981, 242714, 392761, 635544, 1028377, 1663996, 2692451, 4356528, 7049063, 11405678, 18454831, 29860602, 48315529, 78176230
Offset: 1
Keywords
Programs
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 3 n; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A154691 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192748 *)
Formula
Conjecture: G.f.: -x^2*(1+x+x^2) / ( (x^2+x-1)*(x-1)^2 ), so the first differences are in A154691. - R. J. Mathar, May 04 2014
Comments