This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A192749 #11 Jun 13 2015 00:53:53 %S A192749 0,1,6,16,35,68,124,217,370,620,1027,1688,2760,4497,7310,11864,19235, %T A192749 31164,50468,81705,132250,214036,346371,560496,906960,1467553,2374614, %U A192749 3842272,6216995,10059380,16276492,26335993,42612610,68948732,111561475 %N A192749 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. %C A192749 The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+4n+1 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744. %C A192749 a(n+1) is the row sum of row n of the triangle defined by T(n,1)=n*(n-1)+1, T(n,n)=2*n-1, n>=1, and T(r,c)=T(r-1,c)+T(r-2,c-1). The triangle starts 1; 3,3; 7,4,5; 13,7,8,7; 21,14,12,12,9; - _J. M. Bergot_, Apr 26 2013 %H A192749 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-1,1). %F A192749 G.f. -x*(1+3*x) / ( (x^2+x-1)*(x-1)^2 ). a(n+1)-a(n) = A053311(n). - _R. J. Mathar_, Apr 29 2013 %t A192749 q = x^2; s = x + 1; z = 40; %t A192749 p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 4 n + 1; %t A192749 Table[Expand[p[n, x]], {n, 0, 7}] %t A192749 reduce[{p1_, q_, s_, x_}] := %t A192749 FixedPoint[(s PolynomialQuotient @@ #1 + %t A192749 PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192749 t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; %t A192749 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] %t A192749 (* A053311 *) %t A192749 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] %t A192749 (* A192749 *) %Y A192749 Cf. A192744, A192232. %K A192749 nonn,easy %O A192749 0,3 %A A192749 _Clark Kimberling_, Jul 09 2011